Highest vectors of representations (total 8) ; the vectors are over the primal subalgebra. | \(g_{26}+g_{25}\) | \(g_{16}+g_{7}\) | \(g_{9}+g_{5}\) | \(g_{36}\) | \(g_{24}\) | \(g_{15}\) | \(g_{34}\) | \(g_{35}\) |
weight | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{3}\) | \(4\omega_{1}\) | \(4\omega_{2}\) | \(4\omega_{3}\) | \(2\omega_{1}+2\omega_{2}+2\omega_{3}\) | \(2\omega_{1}+2\omega_{2}+2\omega_{3}\) |
Isotypical components + highest weight | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0) | \(\displaystyle V_{2\omega_{3}} \) → (0, 0, 2) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0) | \(\displaystyle V_{4\omega_{2}} \) → (0, 4, 0) | \(\displaystyle V_{4\omega_{3}} \) → (0, 0, 4) | \(\displaystyle V_{2\omega_{1}+2\omega_{2}+2\omega_{3}} \) → (2, 2, 2) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{2}\) \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) \(-4\omega_{2}\) | \(4\omega_{3}\) \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) \(-4\omega_{3}\) | \(2\omega_{1}+2\omega_{2}+2\omega_{3}\) \(2\omega_{2}+2\omega_{3}\) \(2\omega_{1}+2\omega_{3}\) \(2\omega_{1}+2\omega_{2}\) \(-2\omega_{1}+2\omega_{2}+2\omega_{3}\) \(2\omega_{3}\) \(2\omega_{2}\) \(2\omega_{1}-2\omega_{2}+2\omega_{3}\) \(2\omega_{1}\) \(2\omega_{1}+2\omega_{2}-2\omega_{3}\) \(-2\omega_{1}+2\omega_{3}\) \(-2\omega_{1}+2\omega_{2}\) \(-2\omega_{2}+2\omega_{3}\) \(0\) \(2\omega_{2}-2\omega_{3}\) \(2\omega_{1}-2\omega_{2}\) \(2\omega_{1}-2\omega_{3}\) \(-2\omega_{1}-2\omega_{2}+2\omega_{3}\) \(-2\omega_{1}\) \(-2\omega_{1}+2\omega_{2}-2\omega_{3}\) \(-2\omega_{2}\) \(-2\omega_{3}\) \(2\omega_{1}-2\omega_{2}-2\omega_{3}\) \(-2\omega_{1}-2\omega_{2}\) \(-2\omega_{1}-2\omega_{3}\) \(-2\omega_{2}-2\omega_{3}\) \(-2\omega_{1}-2\omega_{2}-2\omega_{3}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{2}\) \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) \(-4\omega_{2}\) | \(4\omega_{3}\) \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) \(-4\omega_{3}\) | \(2\omega_{1}+2\omega_{2}+2\omega_{3}\) \(2\omega_{2}+2\omega_{3}\) \(2\omega_{1}+2\omega_{3}\) \(2\omega_{1}+2\omega_{2}\) \(-2\omega_{1}+2\omega_{2}+2\omega_{3}\) \(2\omega_{3}\) \(2\omega_{2}\) \(2\omega_{1}-2\omega_{2}+2\omega_{3}\) \(2\omega_{1}\) \(2\omega_{1}+2\omega_{2}-2\omega_{3}\) \(-2\omega_{1}+2\omega_{3}\) \(-2\omega_{1}+2\omega_{2}\) \(-2\omega_{2}+2\omega_{3}\) \(0\) \(2\omega_{2}-2\omega_{3}\) \(2\omega_{1}-2\omega_{2}\) \(2\omega_{1}-2\omega_{3}\) \(-2\omega_{1}-2\omega_{2}+2\omega_{3}\) \(-2\omega_{1}\) \(-2\omega_{1}+2\omega_{2}-2\omega_{3}\) \(-2\omega_{2}\) \(-2\omega_{3}\) \(2\omega_{1}-2\omega_{2}-2\omega_{3}\) \(-2\omega_{1}-2\omega_{2}\) \(-2\omega_{1}-2\omega_{3}\) \(-2\omega_{2}-2\omega_{3}\) \(-2\omega_{1}-2\omega_{2}-2\omega_{3}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\oplus M_{-4\omega_{2}}\) | \(\displaystyle M_{4\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\oplus M_{-4\omega_{3}}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{2}+2\omega_{3}}\oplus M_{2\omega_{2}+2\omega_{3}}\oplus M_{2\omega_{1}+2\omega_{3}}\oplus M_{2\omega_{1}+2\omega_{2}} \oplus M_{-2\omega_{1}+2\omega_{2}+2\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{2\omega_{1}-2\omega_{2}+2\omega_{3}}\oplus M_{2\omega_{2}} \oplus M_{2\omega_{1}}\oplus M_{2\omega_{1}+2\omega_{2}-2\omega_{3}}\oplus M_{-2\omega_{1}+2\omega_{3}}\oplus M_{-2\omega_{2}+2\omega_{3}} \oplus M_{-2\omega_{1}+2\omega_{2}}\oplus M_{0}\oplus M_{2\omega_{1}-2\omega_{2}}\oplus M_{2\omega_{2}-2\omega_{3}}\oplus M_{2\omega_{1}-2\omega_{3}} \oplus M_{-2\omega_{1}-2\omega_{2}+2\omega_{3}}\oplus M_{-2\omega_{1}}\oplus M_{-2\omega_{2}}\oplus M_{-2\omega_{1}+2\omega_{2}-2\omega_{3}} \oplus M_{-2\omega_{3}}\oplus M_{2\omega_{1}-2\omega_{2}-2\omega_{3}}\oplus M_{-2\omega_{1}-2\omega_{2}}\oplus M_{-2\omega_{1}-2\omega_{3}} \oplus M_{-2\omega_{2}-2\omega_{3}}\oplus M_{-2\omega_{1}-2\omega_{2}-2\omega_{3}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\oplus M_{-4\omega_{2}}\) | \(\displaystyle M_{4\omega_{3}}\oplus M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\oplus M_{-4\omega_{3}}\) | \(\displaystyle 2M_{2\omega_{1}+2\omega_{2}+2\omega_{3}}\oplus 2M_{2\omega_{2}+2\omega_{3}}\oplus 2M_{2\omega_{1}+2\omega_{3}}\oplus 2M_{2\omega_{1}+2\omega_{2}} \oplus 2M_{-2\omega_{1}+2\omega_{2}+2\omega_{3}}\oplus 2M_{2\omega_{3}}\oplus 2M_{2\omega_{1}-2\omega_{2}+2\omega_{3}}\oplus 2M_{2\omega_{2}} \oplus 2M_{2\omega_{1}}\oplus 2M_{2\omega_{1}+2\omega_{2}-2\omega_{3}}\oplus 2M_{-2\omega_{1}+2\omega_{3}}\oplus 2M_{-2\omega_{2}+2\omega_{3}} \oplus 2M_{-2\omega_{1}+2\omega_{2}}\oplus 2M_{0}\oplus 2M_{2\omega_{1}-2\omega_{2}}\oplus 2M_{2\omega_{2}-2\omega_{3}}\oplus 2M_{2\omega_{1}-2\omega_{3}} \oplus 2M_{-2\omega_{1}-2\omega_{2}+2\omega_{3}}\oplus 2M_{-2\omega_{1}}\oplus 2M_{-2\omega_{2}}\oplus 2M_{-2\omega_{1}+2\omega_{2}-2\omega_{3}} \oplus 2M_{-2\omega_{3}}\oplus 2M_{2\omega_{1}-2\omega_{2}-2\omega_{3}}\oplus 2M_{-2\omega_{1}-2\omega_{2}}\oplus 2M_{-2\omega_{1}-2\omega_{3}} \oplus 2M_{-2\omega_{2}-2\omega_{3}}\oplus 2M_{-2\omega_{1}-2\omega_{2}-2\omega_{3}}\) |